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Network-based approaches are widely adopted to model functional and structural ‘connectivity’ of the living
brain, extracted noninvasively with magnetic resonance imaging (MRI). However, these analyses —on
functional and structural networks— render unreliable at the finer temporal, spatial, and brain-parcellation
scales. Consequently, the clinical translation of these analyses has yet to materialize meaningfully, and
interpretation of the skyrocketing production of scientific literature requires caution. We will characterize
relevant sources of variability and assess the reliability of structural and functional networks extracted from
MRI with the repeated acquisition of a single, healthy individual, whomwe regard as the ‘Human Connectome
Phantom’. Two comprehensive MRI protocols will be executed across three different devices (48, 12, and 12
sessions, respectively) while recording a wealth of physiological signals to help model corresponding
spurious effects on brain networks. To maximize reuse, e.g., as a benchmark reference, a baseline for
machine learning models, or a source of prior knowledge, we will openly share all data and their derivatives.
By systematically assessing spurious sources of variability throughout the neuroimaging workflow, we will
deliver reliability margins of brain networks that inform future research and contribute to the standardization
of ‘connectivity measurement’.

Brain networks extracted from magnetic resonance imaging (MRI) offer a noninvasive approach to understanding
spatially-distributed correspondences of its structure, function, or both. Intending to enable the identification

of useful biomarkers to assess the neurotypical trajectory of the brain, these applications (so-calledMRI connectomics;
Hagmann et al., 2010) first looked at network patterns emerging from structural features of the brain and their
links to disease (Griffa et al., 2013). Indeed, diffusion MRI (dMRI) allows for brain tractography, which tracks
the pathways of major fiber bundles within the brain to interpret them as links between brain regions (structural
connectivity, SC; Hagmann, 2005). Functional MRI (fMRI) enables the extraction of neural activity correlations
between regions (functional connectivity, FC; Damoiseaux et al., 2006) and permits the investigation of temporal
patterns (that is, brain function dynamics; e.g., Chang and Glover, 2010; Sadaghiani et al., 2015; Griffa et al., 2017;
Preti et al., 2017). Concurrently, interest has steered toward convergent analyses of SC and FC as a better-founded
strategy for understanding the brain (Bargmann and Marder, 2013). Lately, connectivity analyses have organically
generalized to several brain data sources (e.g., genomics; Arnatkeviciute et al., 2021) that aggregate into a new
discipline of ‘network neuroscience’ (Bassett and Sporns, 2017).

SC and FC extracted from MRI have proven sufficient levels of reliability to discriminate between individu-
als (Mueller et al., 2013; Finn et al., 2015, 2017), and such reliability is reportedly stable from months to years (Grat-
ton et al., 2018; Horien et al., 2019). Moreover, MRI connectomics has displayed strong associations between SC
and FC networks at the larger scales of analysis (Honey et al., 2009; Hermundstad et al., 2013; Rosenthal et al.,
2018; Vázquez-Rodríguez et al., 2019). As reviewed by Bijsterbosch et al. (2020), imaging and analytical limitations
wane such associations out at the finer scales of analysis. Pushing the spatial resolution of dMRI and fMRI to
the proximity of 1.0×1.0×1.0 [mm3] can be done at the expense of the signal-to-noise ratio. Likewise, improving
the temporal resolution of fMRI in the sub-second range competes with spatial resolution. In the case of dMRI,
increasing the angular resolution or the sensitivity to diffusivity is not free of challenges either (e.g., scan length,
device capability, artifacts). Further limitations arise in downstream modeling imposed by the spatial/areal extent of
the network nodes (or brain ‘units’; Bijsterbosch et al., 2020), which determines the sampling density of edges in the
resulting connectivity matrices. The definition of brain units is most often determined by the ‘regional’ resolution of
the parcellation/atlas of reference, a methodological choice (Ciric et al., 2022) which has been demonstrated to
introduce large variability, e.g., in FC (Doucet et al., 2019). These limitations have hindered the discovery of distinct
SC and FC associations and links to clinical conditions and behavior at the finer scales of analysis (Rodrigue et al.,
2021). The most plausible explanation for these limitations is that measurements obtained with MRI are indirect,
spatiotemporally uncertain, and confounded by other signal sources (Esteban et al., 2019). Particularly in the case of
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fMRI, a definition of what noise is and what is the signal is itself controverted, partly because it remains unclear how
spontaneous neural firing should be modeled (Uddin, 2020). If not accounted for, noise and artifacts accumulate
downstream of the research workflow, which may also build up further spurious variability (e.g., numerical errors).
Consequently, SC and FC contain large false positive and negative ratios in both the structural (Zalesky et al.,
2016; Maier-Hein et al., 2017) and the functional (Power et al., 2012; Chen et al., 2020) networks. Therefore, it is
critical to characterize the validity and reliability of MRI data (Zuo et al., 2019; Milham et al., 2021), as well as
those of SC (Buchanan et al., 2014; Sarwar et al., 2021; Cai et al., 2021) and FC (Noble et al., 2017, 2019, 2020;
Cosgrove et al., 2022), before biomarkers may be defined and derived from these analytical approaches. Improving
the reliability of SC and FC is critical to current network neuroscience approaches and emerging frameworks, such
as edge-based functional coactivation (Zamani Esfahlani et al., 2020).

Here, we characterize the reliability of SC and FC by adopting a ‘dense imaging’ approach (Naselaris et al., 2021)
that involves the repeated acquisition (72 sessions in total) of MRI data on a single human. Data acquisition will be
carried out in a short time span to minimize within-subject variations due to aging and to limit the possibility of
unexpected life events that may induce changes in the brain (e.g., COVID-19 infection; Douaud et al., 2022). Thus,
the single-subject approach is akin to a living phantom, thereby excluding between-subjects variability sources from
our analyses. The phantom is chosen to be an individual at a plateau of brain development (i.e., 25–55 years old) to
further minimize drifts in SC and FC patterns. We will further minimize transient structural (Dubol et al., 2021) and
connectivity (Greenwell et al., 2021) changes reportedly correlated with the menstrual cycle by choosing a biological
male individual. Additional reasons to select a male include the non-negligible differential burden the participant
assumes, emerging from closely tracking the menstrual cycle and related factors (e.g., hemoglobin levels and/or
abundance of discharges, pain, etc.). Moreover, accepting the publication of their self-reported information about
their menstrual cycle would be set as an inclusion criterion to ensure all data can be openly shared. Alternatively,
the redaction of such information before sharing would severely degrade the reuse potential of the dataset. Data will
be acquired across three 3.0 T scanners (see Table 1). One of the scanners, with part-time research dedication, is
suitable for acquiring a wealth of sophisticated MRI sequences with simultaneous recording of several physiological
signals and eye tracking, which enable the investigation of various variability sources (Chen et al., 2020). In addition
to this ‘reliability’ subset of data (see Figure 1), additional data will be acquired across the three available scanners to
(i) characterize the consistency of SC and FC between acquisition devices that are proximal in settings (e.g., all three
scanners are 3.0 T systems, Siemens Healthineers); and (ii) generalize the reliability characterization on to more
standard, clinical settings and MR acquisition protocols. Rather than seeking a characterization of reliability that
generalizes across subjects, this study is proposed to serve as preliminary data in the estimation of the number of
repetitions per subject that ensure pre-specified levels of statistical power, thereby optimizing the balance between
their commitment as healthy volunteers and the research output.

The design of the study (Figure 1 provides a graphical overview) observes the latest recommendations for
neuroimaging studies (Niso et al., 2022; Rosenberg and Finn, 2022) regarding sample size, pre-registration of the
analyses before acquiring the data, quality assessment and control, and transparency (e.g., comprehensive reporting
of methods and results of all the analyses, as well as openly sharing data and software). The new, open dataset will
evenly cover dMRI and resting-state fMRI (RSfMRI), in contrast to precedent efforts focused on either SC or FC.
We overview available alternative datasets in Table 2 and discuss how this undertaking complements the existing
wealth of data. For a broader context in data-sharing of MR connectomics and its ethical support, refer to Laird
(2021). Correspondingly, preprocessed data derivatives will also be openly released to alleviate the carbon footprint
of reprocessing the original dataset and to ease the full replication of this study. The study design also aims to
minimize analytical variability sources, in particular arising from the neuroimaging pipeline implementation (Li
et al., 2021), by using ‘standardized’ preprocessing tools from our NiPreps (NeuroImaging PREProcessing toolS;
www.nipreps.org) ecosystem, such as fMRIPrep (Esteban et al., 2019). Moreover, this registered report includes
the plan for confirmatory analyses in complete detail as an additional measure protecting against methodological
variability (Botvinik-Nezer et al., 2020; Sarwar et al., 2021).

We will model the reliability of edges in SC networks with a Bayesian analysis framework (Hinne et al., 2013).
Such a framework will generate edge-wise posterior distributions on which we will determine the most reliable

Table 1. A ‘dense imaging’ approach across three different systems of a single vendor. A total of 72 sessions will be carried out across three different scanners,

however all built by Siemens Healthineers and of 3.0 T magnetic field strength (Figure 1). One scanner will repeat a ‘reliability’ protocol with 36 sessions. In addition,

a ‘standard’ protocol will be executed 12 times in each of three scanners (including the scanner of the ‘reliability’ protocol), which will be utilized in the study to

assess between-scanner variability. In order to keep between-scanner variability limited, only single-vendor, 3.0 T scanners will be considered.

Identifier Manufacturer Model Software Version Field Clinical use hours Sessions MRI Protocol

BH07060 Siemens Magnetom PrismaFit XA30 3T 7h-13h 36 Reliability

12 Standard

BH07067 Siemens Magnetom VidaFit XA20 3T 7h-22h 12 Standard

BH07035 Siemens Magnetom Vida XA30 3T 7h-22h 12 Standard
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edges and characterize credible margins of the presence or absence of connections. The resource will also enable
exceptional opportunities for researchers concerned with the confounding effects of physiology (Chang et al., 2009)
owing to the collection of fMRI data for cardiovascular reactivity mapping (Bright et al., 2020; Pinto et al., 2021).
Such mapping is critical for isolating BOLD (blood-oxygen-level-dependent, the most widely used fMRI contrast)
components from other sources of confounds to characterize the hemodynamic activity and inform downstream
denoising and modeling. Further, separating and quantifying the variability sourcing from spontaneous neural
firing (Uddin, 2020) and non-repeatable activation elicited by behavior (Rosenberg et al., 2020; Song and Rosenberg,
2021) are of paramount interest in the case of fMRI. Indeed, Finn and Rosenberg (2021) have raised awareness
that optimizing FC analyses for reliability (e.g., ‘fingerprinting’; Finn et al., 2015) effectively sets bounds to the
prediction of behavior. To boost behavior prediction in the long term, we set out to investigate the reliability of the
FC extraction process and outcomes. Therefore, we will minimize transient behavioral effects during the RSfMRI
experiments by reproducing a naturalistic movie (Finn and Bandettini, 2021) in all sessions. Naturalistic movie
watching has also been confirmed to reduce head-motion and to help keep higher levels of arousal as compared to
more conventional RSfMRI with eyes-open and a fixation point (Vanderwal et al., 2017). We will further minimize
physiological sources of variance by leveraging the cardiovascular reactivity mapping and other physiological
information. Finally, we propose a principal components analysis (Bari et al., 2019) to determine the core structure
of FC across sessions. We hypothesize that behavioral variance will decay over the project span, allowing us to
characterize residual variability sources. Further, we will also comparatively investigate the estimated head motion
patterns during dMRI and fMRI to isolate biases derived from the algorithmic implementation, building on the
work of Bolton et al. (2020). Finally, we will use multivariate analysis of variance (MANOVA) to investigate ‘scanner
effects’ on SC and FC with data collected on the clinical devices. In sum, this study will characterize the reliability of
SC and FC networks extracted from d/fMRI, respectively, and determine structured biases between data collected
from different scanners with otherwise homogeneous settings. Such a characterization is critical to bridging the
gap separating network analysis from more reliable network neuroscience and, in the longer term, the definition of
robust biomarkers for clinical application.

Methods

Data

Participant and ethical review. The participant (author O.E.) is a left-handed white Hispanic male, aged 40
at the onset of the study. The participant has a history of anxiety disorder and sporadic cluster headaches, but is
otherwise generally healthy. The participant has mild myopia in both eyes (-0.5 right, -0.75 left). The study protocol
was submitted to the Swiss BASEC (Business Administration System for Ethics Committees) and received positive
approval from the corresponding local Ethics Committee on May 30, 2022 (project 2022-00360).

Standard Operating Procedures (SOPs). All the data collection and methodological implementation details are
comprehensively specified in the SOPs document (for a description of SOPs and their relevance in more detail, refer
to Etzel et al., 2022). The SOPs are developed with Markdown (a popular markup language for documentation) and
leverage Git for version control and to protect sensitive information (e.g., usernames and passwords) by a design that
keeps secrets separate (and inaccessible) from the public repository. The SOPs are available at axonlab.org/hcph-
sops.
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Management

& anonymization

Preprocessing

SC, FC extraction

Research scanner
A 3T Siemens Magnetom PrismaFit system
with multiband/multiecho capabilities

Clinical scanners
Two 3T Siemens Magnetom Vida and VidaFit

systems with wide bores

Comprehensive MRI protocol
T1w, T2w, SE-BOLD, ME-BOLD, HARDI, B0 maps

Simplified MRI protocol
T1w, T2w, SE-BOLD, DTI, B0 maps

Unprocessed

Preprocessed
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Data
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Figure 1. Characterizing the reliability of edges in connectivity matrices extracted from a single human phantom. Leveraging three 3.0 T scanners available at
Lausanne University Hospital, a single human subject will undergo 72 MRI sessions to evaluate the variability of structural and functional connectivity (SC, FC,

respectively). One scanner will accommodate a ‘reliability’ MR acquisition protocol, including a number of physiological signals and eye-tracking information that will

allow for sophisticated denoising and a more reliable identification of signal with non-neural origins. Data will then undergo standardized and pre-registered

management, preprocessing (withMRIQC, Esteban et al. (2017), fMRIPrep, Esteban et al. (2019), and dMRIPrep, Joseph et al. (2021)), and connectivity extraction.
Each of these steps will be culminated with corresponding data releases using the BIDS (Brain Imaging Data Structure; Gorgolewski et al., 2016) specifications to
maximize reusability. A total of 36 pairs of SC and FC matrices will then be fed into analyses of variance to identify and characterize the reliability of edges. An

additional set of 36 sessions (12 per scanner) of an adapted MRI protocol suitable for clinical practice will allow to investigate scanner effects and to estimate

generalization of the results on data from other scanners. Abbreviations are spelled out at the bottom of Table 4.

4 of 19



REGISTERED REPORT

Table 2. ‘The HCPh dataset’ will fill a number of gaps within currently available ‘dense imaging’ datasets. A number of datasets have focused on acquiring

large amounts of MRI data on a limited number of individuals. However, these datasets have typically been acquired with the advance of our understanding of the

human brain as a goal. Conversely, the HCPh is designed to fully understand and characterize the reliability of functional and structural connectivity analyses,

from the acquisition of MRI data to the extraction of network information. Therefore, the HCPh focuses on the assessment and optimization of our research

instruments, henceforth contributing to making currently existing datasets more valuable and to increasing the trustworthiness of neuroimaging results. Several

openly accessible datasets are not included in this table, because they only contain fMRI (e.g., Noble et al., 2017; Choe et al., 2015; Gordon et al., 2017; Seeliger
et al., 2019) or dMRI (e.g., Cai et al., 2021; Froeling et al., 2016; Seider et al., 2022) data, and therefore they cannot be used in multi-modal (SC and FC) analyses.

Name 𝑁 𝑆 Anat. dMRI RSfMRI Other Comparative overview

StudyForrest 20 3
1 T1w

1 T2w
1

n/a (only

task-based fMRI)

Time-of-flight MRI

(angiography),

Susceptibility-

weighted MRI

The ‘StudyForrest’ (Hanke et al., 2014) is probably one of the earliest datasets acquiring long sessions of few subjects (dense

sampling). The dataset is characterized by the fMRI acquisition during prolonged stimulation with an auditory feature film

(‘Forrest Gump’). MRI data were acquired on a single 7.0 T device, along with completing structural MRI and conventional

diffusion tensor imaging (DTI). With respect to the proposed dataset, the StudyForrest does not provide RSfMRI and there are

no repeated scans for structural and dMRI data.

MyConnectome 1 110
10 T1w

11 T2w
15 84 × 10 min

Respiration

recordings

Genomic

information

‘MyConnectome’ (Poldrack et al., 2016) stands out as an antecedent to the proposed dataset. Indeed,MyConnectome first
proposed the human phantom approach with the goal of integrating several imaging and non-imaging derived ‘-omes’ for a

single individual in a single analysis. WhereasMyConnectome is designed to address neuroscientific questions, the HCPh has
the intent of contributing to the reliability of MR Connectomics and corresponding methodological instruments by

investigating the neuroimaging pipeline. Comparatively,MyConnectome provides only 15 repetitions of single-shell dMRI

suitable for conventional DTI (as opposed to the HCPh, which will allow more sophisticated modeling sensitive to the varying

diffusivity of tissue); fMRI was acquired with single-echo fMRI, which limits the opportunities for further investigation of

physiological confound sources; acquisition was carried out with only a respiration belt recordings, and there was interest in

several fMRI tasks that were also included in the protocol.

HBN-SSI 13 14
14 T1w

1 T2w
13

13 × 10 min

2 × 12 × 10 min

(naturalistic)

Actimetry sensor,

relaxometry MRI,

multi-echo

MPRAGE,

magnetization

transfer MRI

The Healthy Brain Network Serial Scanning Initiative (‘HBN-SSI’; O’Connor et al., 2017) was the first openly available dataset

acquired to evaluate inter-individual differences and reliability across scan conditions and sessions of RSfMRI. Repeated dMRI

acquisitions are comparable to those planned under the HCPh for the ‘clinical’ protocol, providing moderately

high-angular-resolution and multi-shell data. The HBN-SSI is an ideal dataset to investigate the generalization of the results of

the proposed study to new individuals, as well as to distant scanning settings. Limitations to such future lines will however

certainly be encountered, e.g., the absence of physiological recordings during the HBN-SSI scanning, and the technical

distance of the 1.5 T scanner of HBN-SSI (Siemens Avanto, 32-channel head coil) with respect to our 3.0 T scanners (Table 1).

IBC 12 5
1 T1w

1 T2w
1

n/a (only

task-based fMRI)
T2 FLAIR

The Individual Brain Charting (‘IBC’; Pinho et al., 2018) is very oriented towards task-based fMRI data. As such, the dataset

does not include RSfMRI, and the single dMRI data acquired per subject is a conventional DTI.

NSD 8 30–40
6-10 T1w

2–3 T2w
4

20×5 min or
36×5 min
depending on the

subjects

Eye-tracking

The Natural Scenes Dataset (‘NSD’; Allen et al., 2022) is a recent resource investigating the reliability of high-resolution fMRI

in understanding brain function, specifically the vision system. With that scope, the NSD provides a limited set of

high-angular-resolution and multi-shell dMRI data acquired at 3.0 T. The fMRI data were acquired on a 7.0 T device. Such

high-field scanners are much scarcer than 3.0 T devices and are rarely used in clinical settings. The main focus for the fMRI

acquisition was on visual localizers and the NSD task, thus marginal (although present) on RSfMRI. Finally, the NSD collected

eye-tracking, but no other physiological recordings as compared to the HCPh.

Day2Day 6 40–50

40–50

T1w &

T2w

40–50 40–50

T2w of hippocampus

MRS (MR

spectroscopy)

Covariates

The Day2Day dataset (Filevich et al., 2017) had eight healthy participants, of which only six concluded all the planned
sessions, who underwent brain scanning 40–50 times over the course of six months. Comparatively, Day2Day provides
single-shell dMRI suitable for conventional DTI (as opposed to the HCPh, which will allow high-angular resolution modelling).

Sessions including RSfMRI had a limited length 5 min 8 s, way below broad recommendations of 20 min for reliability (Noble

et al., 2017). Participants were requested to keep their eyes closed during all image acquisitions. The study made a

remarkable effort collecting covariates, which included weather, diet, sleep, smoking, mood, menstrual cycle, etc.

Table columns: 𝑁 is the number of subjects; 𝑆 is the number of sessions per subject; ‘Anat.’ indicates the number of anatomical (T1-weighted –T1w– or T2-weighted –T2w–) imaging assets per subject, across all sessions;
‘dMRI’ and ‘RSfMRI’ indicate the number of diffusion MRI and resting-state functional MRI assets per subject across all sessions, respectively; ‘Other’ indicates additional data included in the dataset which are of particular

interest comparatively to the HCPh.

Table 3. Session schedule for the ‘reliability’ and ‘standard’ imaging protocols. Two MRI protocols have been designed

with consideration to data ‘harmonization’ between the devices, based on their technical capabilities. For instance, one

RSfMRI run will be acquired with the same parameters across the three devices. Protocols are designed for a total session

duration under 90 min. The specific imaging parameters corresponding to all the relevant MR schemes, as well as

abbreviations are found in Table 4.

Reliability Imaging Protocol (36 sessions × one scanner) mm:ss Standard Imaging Protocol (12 sessions × three scanners) mm:ss

Head scout 00:14 Head scout 00:14

FoV Manual positioning 01:00 FoV Manual positioning 01:00

T1w (anatomical reference) 5:41 T1w (anatomical reference) 5:41

DWI (dMRI, structural connectivity) 33:52 EPI BOLD (B0 field mapping) 00:30

DWI (B0 field mapping) 00:54 BOLD (single-echo RSfMRI, eyes open) 20:09

GRE (B0 field mapping) 02:38 GRE (B0 field mapping) 03:08

EPI BOLD (B0 field mapping) 00:27 BOLD (multi-echo RSfMRI, eyes open, only BH07060) 10:09

BOLD (positive-control task fMRI) 03:07 DWI (dMRI, structural connectivity) 27:31

BOLD (multi-echo RSfMRI, naturalistic movie) 20:09 DWI (B0 field mapping) 01:10

BOLD (breath-holding task fMRI) 6:00 T2w (anatomical reference) 8:24

T2w (anatomical reference) 5:10

Total Acquisition Time 79:12 Total Acquisition Time 77:56
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MRI protocols and session execution. We will acquire two different MRI protocols, a ‘reliability’ protocol for
execution in the research scanner; and a ‘standard’ protocol. Table 3 introduces the specific MRI acquisitions,
duration, and execution order of both protocols, and Table 4 expands the MRI protocol with the specific parameters
and settings of acquisition. The reliability protocol is designed to characterize the variability sources and associated
distribution spreads. The standard protocol is a projection of the reliability protocol into the specific capabilities and
settings available in the scanning room of the full-time clinical devices (that is, more generally available settings,
hence ‘standard’). The standard protocol is acquired to address the generalization of our reliability characterization
across scanners. MRI will be performed on a regular schedule, subject to the availability of the scanners (Table 1)
and the participant. All sessions of the standard protocol (12 per device) will be acquired interspersing devices.
Circadian effects will be accounted for by scheduling sessions at the same time and day of the week whenever
possible. Nonetheless, the day and time of acquisition will be recorded and included in the statistical modeling
as a confounding factor (Vaisvilaite et al., 2022). The participant will consume a fixed amount of caffeine at
pre-designated times over the 8 h before each session, and will be fed. The times of prior caffeine and food intakes
will be noted in every session, since both factors have effects on FC (Poldrack et al., 2015). The participant will
minimize the consumption of substances that may introduce further variability in the analysis for the span of the
acquisition, and will report if such substances (e.g., 5-HT1A receptor agonists for cluster headaches) have been used.
The participant will keep a sleep diary during the data collection span, reporting the duration and quality of their
sleep. This sleep diary, diet, and fluid (water) intake, as well as mood tracking, will be implemented with Google
Forms to be filled in by the participant at prescribed times. The order of MRI sequences in the protocols is presented
in Table 3, and follows a design considering several relevant aspects: the value of the specific acquisition (e.g., while
all the sessions must have a T1w image, the corresponding T2w image is placed near the end of the session in case an
early stop is necessary), maintenance of the subject’s arousal state (e.g., a control task requiring engagement of the
participant will be executed by the end of the session, separate from the rest of fMRI scans), and synergy between
runs (e.g., a breath-holding task will be executed immediately after the RSfMRI; Stickland et al., 2021).

Sample size. All MRI sessions aggregated across scanners will be acquired over the span of 48 weeks or less
to minimize the impact of physiological and structural changes on the longer-term timescale. Sessions where
either the dMRI and/or the RSfMRI acquisitions do not meet quality-control inclusion criteria established before
acquiring the data (and pre-registered within the SOPs) will be repeated after the initially-planned scanning period.
The sample size of analyses varies depending on each specific analysis’ setup. Analyses addressing the reliability
characterization of SC (section Reliability characterization of parametric diffusion maps and structural connectivity)
will have a sample size of 36 experimental units in one group, which can be doubled if the redundancy of data
is exploited, as the dMRI sequences will acquire the same diffusion orientations with opposed polarities. In the
reliability characterization of FC (Reliability characterization of functional connectivity), the analyses will also have
a sample size of 36 experimental units. The work of Noble et al. (2017) presented evidence that RSfMRI sessions of
20 min (as those proposed in this report) or longer showcase relatively ‘good’ test-retest reliability with five or more
sessions (refer to Figure 2 of Noble et al., 2017). Conversely, when testing generalization onto the clinical protocol,
the sample size will be 𝑛=12 units per each of the three groups (corresponding to the three scanners).

Reliability imaging protocol. A reliability protocol is defined for the BH07060 scanner (Table 1), totaling 36
sessions of ∼120 min duration each (including a preparatory overhead of 30 min per session). The protocol will be
carried out with a 64-channel head coil and contains multi-shell, high-angular resolution dMRI, and resting-state
BOLD-fMRI obtained bymeans ofmulti-echo echo-planar imaging (EPI) for the purpose of signal variability analyses
and the extraction of connectivity matrices (Table 3). These dMRI and fMRI sequences leverage simultaneous
multi-slice (SMS) imaging, an EPI acceleration technique based on parallel acquisition. In addition, anatomical
MRI is included for the spatial contextualization of results within-subject and with respect to standard spaces used
for group inference in neuroimaging. Finally, further MRI data will be acquired for the quality assessment and
correction of artifacts. Specifically, we will collect two different alternatives for mapping B0 field inhomogeneity
(often referred to as ‘fieldmap’), one ‘positive control’ fMRI task (unrelated to the purpose of the experiment but
assistive in modeling sources of spurious variability), and a breath-holding task (for comprehensive physiological
modeling). The protocol specification is described in Table 3, and the full detail of the corresponding MRI sequences
in Table 4. Some experiments present visual cues, which will be back-projected onto a mirror attached to the head
coil, with a total distance between the participants’ eyes and the screen of 102 cm. The nearsightedness prescription
of the participant is small enough to allow the execution of the acquisition protocol without visual aids. The reliability
protocol will also collect a wealth of physiological information, and eye tracking traces, described below in Other
recordings.

Standard imaging protocol. A standard protocol is defined for the two full-time clinical scanners (see Table 1)
totaling 36 sessions (12 sessions for each device). Sessions will be collated within the collection time frame of the
reliability sample. This standard protocol (fully described in Table 3) is estimated to have a duration of 68 min
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plus a preparatory overhead of 15 min per session. Several factors impose limitations with respect to the reliability
protocol: (i) collection will be carried out with a more generally available 32-channel head coil; (ii) the two scanners
feature wider cores for clinical purposes; and (iii) neither of the scanners is equipped to execute SMS sequences.
The protocol specification, described in Table 4 alongside full-detail of the corresponding MRI sequences will be
openly distributed with the data release of the unprocessed dataset.

Structural connectivity: diffusion MRI. High-angular-resolution, multi-shell data uniformly covering the full
sphere of the Q-space (Caruyer et al., 2013) will be acquired as prescribed in Table 4. These diffusion orientations
will be acquired in both opposing polarities within a single run. The four possible phase-encoding (PE) readout
directions (Anterior→Posterior, P→A, Left→Right, R→L) will be acquired sequentially per scanning device session,
thereby yielding nine repetitions of each PE direction for the research scanner and three repetitions of each PE
direction per clinical scanner, in consistent ordering.

Functional connectivity: resting-state fMRI. Protocols include one RSfMRI run per session (Table 3). The
duration of this RSfMRI acquisition will be set to 20 min to ensure a high likelihood that at least 15 min of data
per session will survive head-motion scrubbing in preprocessing (Gordon et al., 2017). The RSfMRI run of the
reliability protocol will be acquired with multi-echo EPI to allow more comprehensive physiological modeling;
and while showing a naturalistic image movie (Finn and Bandettini, 2021), without sound. The movie clip will
display a time-lapse of a view over the sea in the village of Mundaka (Spain) and will not contain objects moving or
appearing in the foreground (such as birds flying or people so close that their face is recognizable). The participant
will not be exposed nor have access to the ‘Mundaka clip’ before the first session of the study. The clip will match the
duration of the run and will start playing with the first valid BOLD volume (i.e., after calibration and discarded
‘dummy’ scans). This design with the same clip displayed in every session seeks the appearance of habituation
(that is, diminishing responses with repeated stimuly) that we hypothesize will reduce the signal variability elicited
by behavior, permitting more specific modeling of other variability constituents. In other words, habituation is
anticipated to possibly reduce behavioral variability, rather than the target of our investigation. In the case of the
standard protocol, RSfMRI will be acquired with a single-echo EPI scheme that can be executed on the clinical
devices, and the participant will maintain their eyes open throughout, as the two clinical scanners lack the settings
for movie projection.

Physiological modeling of fMRI: breath-holding task. A breath-holding task paradigm is included in the
reliability protocol to enable a comprehensive physiological modeling with cardiovascular reactivity mapping.
Cardiovascular reactivity can reliably be mapped with a capnograph in combination with a nasal cannula to measure
the CO2 levels in exhaled air (Pinto et al., 2021). In combination with the respiration belt measurements, we plan
to model a respiratory response function (Birn et al., 2008) that can then be evaluated for reliability across sessions,
and for regressing out the cardiovascular artifacts from the BOLD signal (Bulte andWartolowska, 2017) before
extracting FCs. The breath-holding task has been designed following several recommendations from the review
of Pinto et al. (2021). The baseline breathing block will be paced at a frequency pre-established by measuring the
individual’s normal breathing frequency during the piloting stage of the project (Bright and Murphy, 2013). A
period of apnea will follow immediately after expiration to maximize the reliability of the cerebrovascular response
and robustness to involuntary confounding factors (e.g., involuntary Valsalva maneuver), and hence overall easier
to model (Scouten and Schwarzbauer, 2008). The CO2 signal from a gas analyzer (ML206, ADInstruments) will
be corrected for the latency added by the length (8,4 m) of the tube connecting to the nasal cannula (Moreton
et al., 2016). Color-coded visual cues with homogeneous brightness (to minimize the activation owing to visual
response) will instruct the subject to breathe in and out at the pre-determined individual’s normal frequency for 25 s
ensuring the block ends with a full expiration cue, then followed by an apnea (breath hold) period of 15 s (Bright
and Murphy, 2013). A total of five blocks will be executed, as it has been reported that this paradigm is robust
with three repetitions (Lipp et al., 2015). An additional block will be set up at the beginning of the task, but the
participant will be instructed to visualize and dismiss visual cues (i.e., normally breathe), to allow modeling of the
visual response and its removal from the cardiovascular reactivity mapping as well as ensuring the gas analyzer is
in a stable measurement regime. A pre-determined visual cue will inform the participant that the test block has
concluded and, therefore they should engage in the breath-holding task. After the last apnea block, a normally-paced
respiration block of 25 s will be appended to account for the signal lag of the gas analyzer and the tubing (5–25 s),
and to allow full recovery of the normal breathing by the participant. To maximize the information that can be
extracted from the task, it will be executed contiguously after and using the same settings of the multi-echo RSfMRI
run, which will also be used for cardiovascular reactivity mapping without respiratory challenge (Stickland et al.,
2021). Moreover, it has been shown that using multi-echo fMRI improves cerebrovascular response and increases
its reliability across sessions (Moia et al., 2021). To convert from gas concentration into exhaled CO2 pressure, the
atmospheric pressure in the control room (where the gas analyzer will be placed) will be measured with a barometer
before each session.
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Quality assessment fMRI run: positive control task. We will acquire a brain activation (‘positive control’)
task paradigm with well-known, robust expected responses (Harvey et al., 2018). Such reliable responses enable
controlling for the correctness of the data management and processing pipelines at several checkpoints (Niso et al.,
2022). We derived our implementation of the positive control task from the ‘eye-movement’ variant of the tasks
proposed by Harvey et al. (2018). The task is implemented with blocks of three stimuli: visual grating pattern,
finger-tapping commands (left/right), and gaze movement. The stimuli presentation order and their realization
are randomized for every block and every session (e.g., the coordinates of the fixation point in the gaze-movement
block or the hand of the finger-tapping block).

Other recordings. All fMRI acquisitions of the reliability protocol will be acquired while recording physiological
information from a respiration belt, three electrocardiogram (ECG) leads, and a gas analyzer device (measuring
the exhaled CO2 concentration), time-locked to image acquisition. An eye-tracking system (EyeLink 1000Plus, SR
Research) will record eye movements. Gaze trajectories of the right eye will be recorded using infrared light, with a
sampling rate of 1000 Hz, through a mirror positioned inside the scanner bore, replacing the infrared-incompatible,
standard head-coil mirror. Naked weight will be recorded at home before every session by the participant. Blood
pressure (recorded with an Omron M3 Comfort device while sitting down) and body temperature will be measured
before and after the scanning session. Scanning room temperature will also be recorded before and after every
session. Self-reported measures (tracking sleep, mood, etc.), weight, blood pressure, scanning room temperature,
and control room pressure will be logged with Google Forms.

Prior knowledge from brain atlases. One critical aspect of neuroimaging analyses is the choice of spatially-
normalized anatomical references and corresponding atlases (Ciric et al., 2022). Standardized spatial references
and corresponding atlases will be integrated into the analyses with TemplateFlow (Ciric et al., 2022). Therefore, all
analyses will incorporate prior knowledge drawn from atlases defined with reference to the MNI152NLin2009cAsym

template (Fonov et al., 2011). Nodes of networks formalizing SCs and FCswill be defined by projecting a probabilistic
atlas called ‘Dictionary of Functional Modes for brain imaging’ (DiFuMo;Dadi et al., 2020) on to the scanner’s space
of each d/fMRI run. All analyses will be executed at three regional scales (namely, 64, 128, and 512 ‘dimensions’ of
the atlas) to allow insights on how reliability evolves as the regional scale resolution is higher. DiFuMo has large
coverage over the brain extent (i.e., including subcortical grey matter regions and the cerebellum); thus, it will not be
combined with other specialized atlases. For FC analyses, the atlas will be resampled onto the fsaverage surface
atlas to enable mixed vertex-wise (for samples on the cortical surfaces) and voxel-wise (for samples in subcortical
and cerebellar regions) analysis. For analyses looking into the reliability of dMRI-derived scalar maps, we will
use the four scales in the atlas of white-matter bundles included within the multi-scale probabilistic atlas of the
human connectome by Alemán-Gómez et al. (2022). The scale 1 of the atlas (the coarsest) will be projected into
the anatomical T1w space, and from that into each individual run through spatial transformations estimated with
dMRIPrep.

MRI data acquisition, quality control, and preprocessing. The MRI data acquisition workflow will be imple-
mented according to the ReproNim Guidelines (Kennedy et al., 2019). Subsequently, data will be converted into the
Brain Imaging Data Structure (BIDS; Gorgolewski et al., 2016). All MRI data will then be quality-assessed and
preprocessed following previously published protocols (Esteban et al., 2020) with the corresponding NiPreps tools,
i.e., MRIQC (Esteban et al., 2017), fMRIPrep (Esteban et al., 2019, RRID:SCR_016216), and dMRIPrep (Joseph
et al., 2021). Both fMRIPrep and dMRIPrep will be set-up to use the same anatomical preprocessing and surface
reconstruction from T1w and T2w images. The software versions of fMRIPrep and dMRIPrep tools will be locked on
the latest minor release series available on the date of the last MRI session (e.g., 22.3.x, if the 22.3 series are already
available). The software version of MRIQC will be locked on the latest minor available on the date of the first MRI
session. All sessions will be processed with that same specific, pinned version. Preprocessing tools will generally be
executed with default parameters, and deviations from defaults will be clearly reported. ‘Analysis-grade’ data, esti-
mated nuisance time series, and estimated data transformations will be stored following the latest BIDS-Derivatives
specifications available at the time.

Tensor-fitting, tractography, and extraction of structural connectivity. The analysis-grade dMRI data gener-
ated by dMRIPrep will then be used to estimate diffusion and Kurtosis tensors (DTI and DKI, respectively) with
MRtrix3 (Tournier et al., 2019), using a weighted linear least squares algorithm. From tensors, seven commonly
used parametric scalar maps will be derived: fractional anisotropy (FA), mean/axial/radial diffusivity, and kurtosis
(MD/AD/RD,MK/AK/RK, respectively). In parallel, orientation distribution functions (ODFs) will be reconstructed
using constrained spherical deconvolution withMRtrix3. We will increase the sample size (to 108 units) by exploiting
the redundancy of data and produce three groups of derived outcomes: (i) from all available diffusion-weighted
polarities; and (ii) and (iii), from one subset of diffusion-weighted polarities and its complementary, respectively.
Streamline deterministic tractography will subsequently be executed, ensuring seeding locations are anatomically
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consistent across the 108 diffusion models. To achieve consistency, we will first determine the number of peaks per
voxel from the ODFs maps. Then, we will project the peaks maps corresponding to each run into the T1w image’s
grid through a rigid body (six degrees of freedom) transformation as estimated by dMRIPrep. A total of two million
random locations in the T1w reference will be determined within voxels in which 95% of the peaks maps have a
single fiber (i.e., one peak). Those locations will then be mapped back to each run’s native space to seed tractography.
We will derive a track density map from the tractography results with MRtrix3. Results of tractography will be
further regularized using COMMIT2 (Schiavi et al., 2020), an improvement over the original Convex Optimization
Modeling for Microstructure Informed Tractography (COMMIT; Daducci et al., 2015). Finally, SC matrices will
be built by aggregating complete fiber tracks connecting two regions at a given scale of the DiFuMo atlas, after the
projection of the atlas into the native (scanner) dMRI image space. SC matrices will be then weighted by the grand
mean of track density values sampled across the tracks involved in the corresponding edge. As it has been previously
reported (Zalesky et al., 2016; Sarwar et al., 2021), the specific parameters in tractography largely determine the
false positive and false negative rates of the resulting connectivity matrices. Therefore, the angular resolution and
the number of seeds will be optimized to maximize the average repeatability of dMRI-derived scalars on the dMRI
data collected as part of the piloting stage (Study timeline section). The optimized parameters will be registered in
our SOPs document before the acquisition of the first MRI session.

Extraction of functional connectivity. FC will be extracted from whole-brain, RSfMRI time-series generated
with fMRIPrep, sampled on the cortical mid-thickness surface, and on a regular, volumetric grid for the subcortical
and cerebellar regions and stored in a mixed volume and surface format (CIFTI2). Time points at the onset of large
head motions will be removed and replaced by interpolation from contiguous time points using cubic B-Spline
kernels, whenever the corresponding framewise displacement (Power et al., 2014) calculated by fMRIPrep is above
a given threshold. We will replicate and report the analyses with three different values for this theshold (0.2 mm,
0.5 mm, and 0.8 mm) covering the most typical range of values for this procedure. A subset of the confounds
produced by fMRIPrep as well as temporal discrete cosine regressors, will be projected on the orthogonal of the
signal space (Friston et al., 1994) and simultaneously (Lindquist et al., 2019) removed from the mixed volume
and surface (CIFTI2) time series. Temporal filtering and confound removal by residualization will be implemented
with Nilearn (Abraham et al., 2014) version 0.9. Subsequently, signals will be extracted and averaged parcel-wise,
with the parcellation schemes described before. FC will be estimated as the inverse covariance matrix (Smith
et al., 2011) of the extracted and averaged time-series estimated by a graphical lasso implemented with Scikit-
Learn (Abraham et al., 2014). L1 regularization will enforce sparsity in the estimated matrices with the goal of
producing more specific FC by effectively reducing false positive connections. This approach has the shortcoming
of likely increasing the false negative rate, which we hypothesize can be limited by leveraging data redundancy (i.e.,
session repetition), an advantage that is typically unavailable to connectivity studies implementing more standard
FC extraction methodologies. Nonetheless, any alternative, exploratory analyses with more standard FC extraction
settings will be reported if the sparsity of the FC matrices impedes a successful characterization of reliability or the
comparison between scanners.

Reliability characterization of parametric diffusion maps and structural connectivity

First, we will visually evaluate the reliability of dMRI-derived scalar maps. A visual assessment of the within-scanner
variability of SC will follow. These two first evaluations will only use the scalar maps derived from the 36 diffusion
models, that is, those using the full data in each session. Finally, we propose a comprehensive Bayesian inference
framework for which the total sample of 108 SCs will be applied.

Reliability of dMRI-derived scalar maps. To identify structured biases and bundle-wise robustness, we will
calculate the average of each scalar map in each region of interest defined by the atlas. Those summaries will be
reported with Bland-Altman (BA; Bland and Altman, 1986) plots, graphically showing the difference with respect
to the average of two repeated measures to investigate their agreement.

Hierarchical clustering analysis of within-scanner variability. The lower triangle of each 𝑁𝑛 × 𝑁𝑛 SC matrix
(𝑁𝑛 ∈ {64, 128, 512} corresponds to the number of nodes in the SC and depends on the scale of the parcellation)
will be unraveled to a 1×𝐶 row vector (𝐶 = 𝑁𝑛 ⋅ (𝑁𝑛 − 1)/2 connections). All row vectors corresponding to SCs will
be stacked together in a 𝑁SC × 𝐶 matrix (G; 𝑁SC = 36 is the number of SC matrices from the reliability dataset).
Then, the 𝐶 columns of the matrix will be reordered via a hierarchical cluster analysis using Ward’s minimum
variance method with matrix rows as features, to index together as columns with similar connectivity patterns.
Finally, the rows (𝑁SC connectivity vectors) will then be sorted using the same hierarchical clustering to identify
what sessions are more similar. A dendrogram representation of the reordered 𝑁SC sessions will then be generated,
and represented with a heatmap of each session’s time of day, average head-motion summarized by framewise
displacement, room temperature at start, and PE direction (Begnoche et al., 2022). To corroborate the hierarchical
analysis, we will use 𝑡-distributed Stochastic Neighbor Embedding (t-SNE; van der Maaten and Hinton, 2008)
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to project the 𝑁SC connectivity vectors of 𝐶 features into a plane, and color the projected samples with the same
factors as for the dendrogram. These analyses will be implemented with Scikit-Learn, pinned on a specific version
available at the start of the collection effort.

Bland-Altman analysis generalized to multiple repetitions. All the pairwise subtractions (i.e., all combinations
of two) of the 𝑁SC connectivity vectors will be calculated and normalized as a percent change over the grand
mean value of that particular connection. In the pool of 𝑁𝑛 ⋅ (𝑁𝑛 − 1)/2 ⋅ 𝑁SC subtractions, we will select the ten
connections with the largest pairwise differences (normalized by the average difference in the pool). BA plots of
those ten connections will be represented with the average connection strength between each pair of sessions on
the 𝑥-axis and the difference in connection strength between each pair of sessions on the 𝑦-axis. Likewise, we will
also generate BA plots of the ten connections with the largest median and normalized differences. BA plots will
be represented with three different hues denoting track length, track-averaged head motion, and track-averaged
tractography density.

Within-scanner differences of structural connectomes. We hypothesize there are specific network edges that
are less reliable, and will test whether there is any interaction with the PE direction of the dMRI data. Inference of
SC will be derived from the Bayesian approach of Hinne et al. (2013), where the quantity of interest is the posterior
distribution of adjacency matrices G given the streamlines connecting two regions obtained with tractography S, a
set of hyperparameters 𝜃, and the edge length l𝑖,𝑗. The complete posterior expressing our knowledge of the SC is
derived from Bayes’ theorem:

P(G ∣ S, 𝜃, l𝑖,𝑗) ∝ P(S ∣ G, 𝜃) ⋅ P(G ∣ l𝑖,𝑗). (1)

Posterior distributions will be approximated employing Markov chain Monte Carlo sampling. Finally, reliability
will be characterized by reporting the spread of edge-wise posterior distributions and the credible intervals of the
posterior distribution of a network prior. These credible intervals of the posterior will also determine the probability
of a type-S (sign) error of the best-fitting model. The network prior P(G ∣ l𝑖,𝑗) models the probability 𝑝𝑖,𝑗 that an
edge between two regions (𝑖, 𝑗) exists, assuming the individual edges are a priori independent:

g𝑖,𝑗 ∣ 𝑝𝑖,𝑗 ∼ Bernoulli(𝑝𝑖,𝑗), and

𝑝𝑖,𝑗 ∣ l𝑖,𝑗 ∼ Exponential(l𝑖,𝑗),
(2)

with g𝑖,𝑗 being an edge inG. In Equation 2, we deviate from (Hinne et al., 2013) to introduce the edge length (l𝑖,𝑗) into
the model as a prior on the probability 𝑝𝑖,𝑗. Finally, we will examine the potential biases introduced by the diffusion
weighting polarity and phase-encoding direction, modeled as random effects, with the introduction of an additional
hierarchical prior. While Hinne et al. (2013) propose this before modeling the variability between individuals
in their SCs, we will derive it to account for the different experimental conditions to determine structure biases
and significant differences in the spread of the posterior distribution P(G𝑚 ∣ S𝑚, 𝜃𝑚, l𝑚𝑖,𝑗), where 𝑚 indicates the
analysis group. The number of posterior draws will be determined by the speed and convergence of posterior checks
(Visual inspection, Gelman-Rubin statistic). Additional models will be formulated where the fixed and random
effects are not modeled or hierarchical, and other variables may be considered, such as top-down initialization of
priors from the coarsest scale of parcellation (64 regions) to the finest (512 regions). Hyperparameters may change
if model convergence fails. Unless the registered model fails to converge as currently described, it will be included
in the model comparison. Model comparison will be performed using the Watanabe-Akaike information criterion
and leave-one-out information criteria. All the modeling framework will be implemented with the most recent
stable release of PyMC (Salvatier et al., 2016) at the conclusion of data collection.

Reliability characterization of functional connectivity

Characterizing the reliability of FC. By consistently replaying the same movie clip (Finn and Bandettini, 2021)
within constant experimental conditions, we hypothesize habituation will emerge in the RSfMRI scans that (i)
reduce the variability of behavioral components of FC (which indeed is the principal challenge to studying reliability,
Finn and Rosenberg, 2021); and (ii) will temporally align some of the physiological sources of BOLD, thereby
yielding larger between-trial correlations and enabling more reliable modeling (and removal) of these effects.
Methodologically, we will approach the question with the analytical framework proposed by Bari et al. (2019),
where the individual FC matrices are aggregated in a single principal component analysis (PCA), and then each FC
can be expressed as a linear combination of a number of components and an adjacency matrix of residuals. Should
our hypothesis be correct, habituation should consistently increase over time of the total variance explained for
individual FC matrices, given a fixed number of components. We will determine such a number with the elbow
plot method to select the minimum number of components. If the elbow plot yields a smooth increase in variance
explained as a function of the number of components, we will select the minimum number of components that
explain at least 85% of the variance. We will test the significance of habituation while accounting for confounding
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effects by establishing a mixed-effects linear model on the residual matrices. To gain insight into how to best
implement the model, we will first attempt a descriptive approach by plotting the edgewise residual variance along
with the corresponding inter-quartile range to visually confirm the expected decrease as a function of the session
index. The data points will be fitted with linear, quadratic, and negative exponential curves, all of which will be
represented on the visualization, however, highlighting the best-fitting one with the highest 𝑅2 value. Furthermore,
to inspect which random predictor of no interest (amongst the time of day, day of the week, coffee consumption,
etc.) should be included as random effects; we will plot the fits separately for bins of factor value (e.g., separately fit
the sessions with respect to the day of acquisition). We will also visually assess whether some functional networks
are more sensitive to habituation than others by separately plotting the edges grouped by networks at the lowest atlas
scale (64 regions). Finally, we will build a baseline mixed-effects linear model with session index as a fixed effect
and will add the orthogonalized predictors of no interest deemed relevant in the descriptive analysis as random
effects. The significance of habituation will be tested by comparing the latter model to the same model without the
sessions index as a fixed effect, using the likelihood ratio test with a statistical significance threshold of 𝛼 = 0.05. If
more models are to be compared, we will also use the likelihood ratio test and all the tested models and results will
be fully reported.

Characterizing scanner effects

Scanner effects on dMRI-derived scalar maps The scalar maps will be preprocessed for the within-scanner
evaluation. Conversely, the variability will be computed with the coefficient of variability (CoV; Equation 3) across
scan sessions for each of the seven diffusion scalar maps on a voxel-wise basis, as well as within regions of interest
resulting from the atlas-based segmentation.

CoV(%) = 𝜎
�̄�

⋅ 100%, (3)

where 𝜎 corresponds to the standard deviation of the scalar metrics and �̄� is the mean of the scalar metrics.

Between-scanner differences of structural connectomes. The SCs extracted from the clinical scanners will
separately be modeled with the Bayesian framework previously described for the within-scanner reliability analysis.
Differences in SC matrices between scanners will be evaluated by calculating the Bayes factor between the posterior
distributions corresponding to each of the three groups. Bayes factors will be reported and interpreted as described
by Jeffreys (Appendix B, 1998).

Determining scanner effects on functional connectivity. Since the standard protocol does not provide RSfMRI
while movie-watching, we will determine scan-effects using the single-echo BOLD runs included in both reliability
and standard protocols. We will first investigate differences in FC between the BOLD runs with and without
naturalistic movie. To do so, we will residualize each of the 36 FC adjacency matrices (extracted from the single-echo,
without-movie data) with respect to the PCA model developed above for the multi-echo BOLD data. We will
determine the statistical significance of differences in residuals with a repeated-measures, multivariate analysis
of variance (RM-MANOVA), with two groups (with/without movie clip) and 36 repetitions. Secondly, to test
for scanner effects, we will re-execute the PCA decomposition using only the single-echo, without-movie data,
and establish a subsequent RM-MANOVA with 3 groups (one per scanner device), on the residualized adjacency
matrices. The statistical significance threshold will be set at the 𝛼=0.05 level for all tests.

Study timeline

The anticipated total duration of the study is 68 weeks, starting from the Stage 1 (accepted in principle) milestone.
The timeline involves ‘freezing’ several sections of the protocol, as they are set as final (e.g., the prescription of all the
parameters in the MRI protocol). The SOPs document will receive updates until the freeze of a particular section, in
which an annotated git tag will be created for preservation. Deviations from the registered report will therefore be
easily tracked by finding differences with respect to the git commit tagged by the corresponding freeze.

Quality assurance of the research workflow. We have acquired a small sample (𝑛 = 18 subjects, two sessions
each) of healthy volunteers under the same ethical approval, with an MRI protocol including both dMRI and
RSfMRI, which will be used to prepare the analysis workflow for the execution of the experiment’s data. This dataset
is currently being used to ascertain the feasibility of the neuroimaging workflow and take corrective actions before
acquiring data. This quality assurance dataset will be released openly, but independently of this particular study.

Piloting the MRI protocols. We have already initiated the deployment of the study protocols (Table 4 and Table 3
on the three scanners involved. The study’s participant is currently running pilot sessions using these protocols to
ascertain the feasibility of the full protocol within the time frame of a session. Pilot sessions will be released with the
dataset with a clear indication of their piloting nature, and will be excluded from final analyses. These sessions will
also be applied to validate the processing workflow from data acquisition to preprocessed derivatives.
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Milestone 1: MRI protocol freeze. Once the piloting stage is deemed complete, the reliability and standardized
protocols will be fixed for the remainder of the study. Modifications to the protocol after this point will require
comprehensive justification. The protocols will be exported to shareable formats under the ReproNim guidelines
and released as part of the unprocessed data package, to ensure the reproducibility of the MR acquisitions.

Data acquisition and quality assessment. Data collection of the reliability dataset will span 18 weeks, starting
after clearing Stage 1. Collection of the standard dataset will start after the reliability dataset has been completed,
within the subsequent 18 weeks. Each session will be quality-assessed with MRIQC as described in our previous
report (Provins et al., 2023), and prepared for archival in BIDS format within the span of two weeks after each
session.

Milestone 2: Completion of data collection. The data acquisition phase will culminate when the target sample
size (in terms of the number of sessions) is achieved for all three MR scanners, including repeat sessions to replace
exclusions due to the substandard quality of the acquired data. A distributable package following BIDS will be
created as the main deliverable. Facial features present in the anatomical data (T1w and T2w images) will be removed
(defacing) to enable redistribution of the dataset on OpenNeuro (Markiewicz et al., 2021). However, based on our
previous exploration (Provins et al., 2022), processing will be carried out on the original images preserving the
face. This unprocessed data package (see Figure 1) will include all the corresponding MRIQC-generated reports and
quality metrics for anatomical, dMRI, and BOLD images, as well as any other data derived from quality assessments
that can be distributed. This package will be released at the conclusion of the study.

Implementation of the software instrumentation for processing and analysis. The data analysis scripts will
make use of several SciPy (Virtanen et al., 2020) and R packages. The implementation of software instruments is
scheduled to start at the conclusion of the piloting phase and will be finished before the start of the data analysis
phase (i.e., week 37 after Stage 1 or earlier). Software execution on high-performance computing resources (e.g.,
SLURM scheduling) will also be trialed out during this phase, before analysis. To maximize the overall replicability
of the study and preserve provenance information of all derived results, the execution will make use of containerized
and versioned environments and the DataLad’s ‘containers-run’ extension. All the source code will be tested on the
piloting data.

Milestone 3: Completion of data preprocessing. Preprocessing with fMRIPrep and dMRIPRep will be initiated
upon completion of data collection, and a second checkpoint for the quality assessment of derivatives will be
executed (Provins et al., 2023). Both preprocessed data, diffusion-derived parametric maps and the extracted SC
& FC matrices will also be organized according to BIDS Derivatives and prepared as a distributable package for
distribution upon finalization of the study.

Milestone 4: Analysis code freeze. Before initiating data analysis, all the analysis code will be locked to a
particular commit of the git repository, and preserved with an annotated git tag. The code will then be packaged
and made publicly available under the Apache 2.0 license (deliverable).

Data analysis. ‘Analysis-grade’ connectivity data will be retrieved once data collection is concluded (that is,
starting on week 37 the latest) and analyzed following the anticipated protocols over the period of five months. The
writing and edition of the Stage 2 report will be executed subsequently to the finalization of each analysis.

Milestone 5: Collection of results. The results and a comprehensive report of deviations from the registered
study will culminate in the data analysis phase. The analysis code will again be tagged, including bugfixes and
registration deviations from the previous freeze, as well as new code for the generation of figures and tables of the
report. The main deliverable of this milestone is the draft of the final manuscript to be submitted to initiate Stage 2
of the study.

Stage 2 submission. Submission of the final results is scheduled before week 68 or earlier.
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Table 4. ‘Reliability’ and ‘standard’ imaging protocols across three 3.0 T scanners. The description of protocols found in Table 3 is expanded with the
following detailed specifications of the MR sequences. These parameters will be optimized when corresponding during the piloting phase of the study (see

section Study timeline). All the scans and the results informing the final choice of the parameter will be comprehensively reported at Stage 2.

Reliability Imaging Protocol (36 sessions × one scanner) Standard Imaging Protocol (12 sessions × three scanners)

Anatomical MRI

T1w MPRAGE, sagittal, 246 slices, matrix 320×320, 0.8×0.8×0.8 [mm3] resolution, FOV=256 mm,

FA=9 °, GRAPPA factor 2, TE/TR/TI = 2.20/1,760/900 ms.
T1w — same parameters as in the reliability protocol

T2w T2-SPACE, sagittal, 176 slices, matrix 256×256, 0.5×0.5×0.9 [mm3] resolution, FOV=240 mm, FA

variable, CAIPIRINHA factor 4, TE/TR/TI = 386/4,900/1,580 ms.
T2w— same parameters as in the reliability protocol

Diffusion MRI (dMRI)

EPI DWI, 279 directions (12×𝑏=700; 40×𝑏=1,000; 90×𝑏=2,000; 132×𝑏=3,000; 6×𝑏=0 [s/mm2]; 𝑏=0
evenly interleaved, matching the 140 orientations and their antipodal directions of the standard protocol),

1.6×1.6×1.6 [mm3] resolution, axial, 87 slices, FOV=239 mm, 146×146 matrix, TR/TE=7,800/98 ms,
GRAPPA factor 2, SMS factor 3

EPI DWI, 140 directions (6×𝑏=700; 20×𝑏=1,000; 45×𝑏=2,000; 66×𝑏=3,000; 3×𝑏=0 [s/mm2]; 𝑏=0
evenly interleaved), 2.0×2.0×2.0 [mm3] resolution, axial, 72 slices, FOV=240 mm, 120×120 matrix,
TR/TE=7,800/92 ms, GRAPPA factor 2, no SMS acceleration

Functional MRI (fMRI)

EPI BOLD TR=1,600 ms, TE=(12.60/33.04/53.48/73.92) ms, FA=64°, 2.2×2.2×2.2 [mm3] resolution,

distance factor 0%, 60 slices, 96×96 matrix, FOV=211 mm, GRAPPA factor 2, SMS factor 4

EPI BOLD TR=2,000 ms, TE=33.04 ms, FA=63°, 2.2×2.2×2.2 [mm3] resolution, distance factor 0%, 60

slices, 96×96 matrix, FOV=211 mm, GRAPPA factor 2

[Only BH07060] EPI BOLD TR=1,600 ms, TE=(12.60/33.04/53.48/73.92) ms, FA=64°, 2.2×2.2×2.2
[mm3] resolution, distance factor 0%, 60 slices, 96×96 matrix, FOV=211 mm, GRAPPA factor 2, SMS

factor 4

B0 field mapping

GRE, 72 slices, TE=(4.45; 6.91) ms, TR=324 ms, matrix 120×120, 2.0×2.0×2.0 [mm3] resolution,

FOV=239 mm, FA=55 °
GRE — same parameters as in the reliability protocol

EPI DWI — 6×𝑏=0 s/mm2, otherwise same parameters as the (reliability) dMRI acquisition EPI DWI — 6×𝑏=0 s/mm2, otherwise same parameters as the (standard) dMRI acquisition

EPI BOLD 4 measurements, TR=3,808 ms, TE=35.00 ms, FA=64°, 2.2×2.2×2.2 [mm3] resolution,

distance factor 0%, 60 slices, 96×96 matrix, FOV=211 mm, GRAPPA factor 2
EPI BOLD— same parameters as in the reliability protocol

Physiological recordings and eye-tracking

Eye-tracking, ECG, respiration belt, CO2 concentration n/a — No simultaneous recordings

Abbreviations: BOLD: blood-oxygen level-dependent; CAIPIRINHA: controlled aliasing in parallel imaging results in higher acceleration; DWI: diffusion-weighted imaging; ECG: electrocardiogram; EPI: echo-planar imaging;

FA: flip angle; FOV: field-of-view; GRAPPA: GeneRalized Autocalibrating Partial Parallel Acquisition; GRE: gradient-recalled echo; MPRAGE: magnetization-prepared rapid gradient-echo; PE: phase-encoding; SMS:

simultaneous multi-slice; TE: echo time; TI: inversion time; TR: repetition time; T2-SPACE: T2- sampling perfection with application-optimized contrasts using different flip angle evolution; T1w: T1-weighted; T2w:

T2-weighted.
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